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1 The Hodgkin-Huxley Model

Initially, we selected the FitzHugh-Nagumo model, which is a simplified yet inaccurate
version of the Hodgkin-Huxley model. The Hodgkin-Huxley model [2] offers a more com-
prehensive and intricate representation of action potential dynamics in neurons [3]. Con-
sequently, we decided to utilize the latter as our ODE model.

The Hodgkin-Huxley model is considered a more realistic and accurate model for describ-
ing neuronal activity, as it takes into account the underlying biophysical mechanisms,
such as the opening and closing of ion channels. However, its complexity makes mathe-
matical and numerical analysis more difficult. The FitzHugh-Nagumo model, although a
simplification, allows for the study of the fundamental properties of neuronal excitability
and action potentials without the inherent complexity of the Hodgkin-Huxley model.[4]

dV

dt
= 1

C
(Iext − INa − IK − IL) (1)

dn

dt
= αn(V )(1 − n) − βn(V )n (2)

dm

dt
= αm(1 − m) − βmm (3)

dh

dt
= αh(1 − h) − βhh (4)

where :

• V (t) : membrane potential, representing the electrical potential difference between
the inside and outside of the cell membrane [V]

• n, m, h : fraction of gates that are in the permissive state [-]

• C : membrane capacitance [ A·s
m2V

]

• Iext : applied external current density [A/m2]

• Ina, IK , IL : ionic current density through sodium, potassium, and leak channels,
respectively [A/m2]

• αn(V ), αm, αh : opening rates of ion channels as a function of membrane potential
[1/s]

• βn(V )βm(V ), βh(V ) : closing rates of ion channels as a function of membrane po-
tential [1/s]
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To simplifie the equation, we consider αm,αh,βm,βh as constants. We are aware that
the behavior of these quantities resembles that of an inverse exponential function[5] 1.
Consequently, the equations found in the literature are inaccurate. Thus, we proceed to
rewrite their equations :

αn = Dn · e
−V
Vn (5)

βn = −Dn · e
−V
Vn (6)

αm = −βm (7)

αh = −βh (8)

(9)

1.1 Verification to the dimensions of equations

• Equation (1):
[

V
s

]
=

[
V ·m2

A·s

]
−

([
A

m2

]
+

[
A

m2

]
+

[
A

m2

]) [
V
s

]
=

[
V
s

]
• Equation (2):

[
1
s

]
=

[
1
s

]
· [−] −

[
1
s

]
· [−]

[
1
s

]
=

[
1
s

]

1.2 What is the link between the equations and the physics of the prob-
lem ?[1]

To arrive at the mathematical formulation of the phenomena, we start by constructing an
electrical circuit that represents the cellular membrane components of a neuron involved
in action potentials, as shown in the figure 1 on the left. The extracellular environment
is at the top, while the intracellular environment is at the bottom.

First, we insert an electrical capacitance between the two environments to represent the
lipid bilayer that isolates them. Next, we represent each type of ion channel with an
electrical resistance. These resistances depend on the voltage, as the channels are closed
in the absence of a stimulus and open when a stimulus arrives.

Finally, we add a voltage-independent resistance for the current leakage, which represents
small current charges that can escape due to the fact that the cell membrane is not
completely impermeable to current even at rest. All components are arranged in parallel
in the circuit, as ions can pass either through the lipid bilayer (which in practice is very
rare) or through one of the ion channels but will never pass through several of these
elements in series to go from one environment to another.[6]

1These functions were provided by Mrs. Hoffait
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Terms in the equation Signification Electric component
V Membrane Potential Electrical Voltage
C Membrane Capacity Capacitor
Iext External applied current Current source
INa Sodium ion current variable resistance (con-

ductance) and battery
IK Potassium ion current variable resistance (con-

ductance) and battery
IL Leakage current variable resistance (con-

ductance) and battery

Table 1: Correspondence between the terms of the equations and the electrical components

Figure 1: Hodgkin Huxley electric model

2 How does this system meet the constraints imposed by
the professor ?

We must define the external current Iext function as a Gaussian function so that the
equations are non-autonomous. A Gaussian is quite suitable for the external current,
given its physical meaning of excitation followed by de-excitation.

• The system studied is useful in a particular field : Yes, the Hodgkin-Huxley model
is widely used in the fields of biophysics and neuroscience to study action potentials
and neuron dynamics

• It is a Cauchy problem: Yes, the Hodgkin-Huxley model is a Cauchy problem, as
one can specify initial conditions for the state variables V(0), n(0), m(0), and h(0)

• Coupled: Yes, the equations of the Hodgkin-Huxley model are coupled, as the state
variables interact with one another in the different equations

• Nonlinear (or linear with non-constant coefficients): Yes, the Hodgkin-Huxley model
is nonlinear due to the αn and βn functions, which depend on the membrane poten-
tial V(t)
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• Non-autonomous with a minimum of 2 state variables: If the external current
Iext is a non-constant function of time, the Hodgkin-Huxley model becomes non-
autonomous. The model has four state variables: V (t), n(t), m(t), and h(t)

The Hodgkin-Huxley model meets all the criteria Mr. Walmag had specified. This model
provides a more detailed and realistic description of neuronal activity compared to the
FitzHugh-Nagumo model, although it is also more complex to analyze and simulate.

3 Transform it to a Cauchy Problem

We must define initial conditions for the four state variables. We know that at rest, and
according to the graph 2, we are at -70mV for V.

• V (0) = −70 · 10−3 V

We must also define initial values for m, n, h. They represent a fraction of openness, so
we can imagine that their value is when the neuron is at rest and does not receive any
external excitation so they all equal 0 :

• n = 0

• m = 0

• h = 0

Figure 2: Membrane Voltage f(t)
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These initial conditions place the neuron in a resting state at the beginning of the sim-
ulation. By applying an external current Iext, we can then study how the membrane
potential and the state variables of the ion channels evolve over time as a function of the
model parameters.

4 Transformation of our autonomous equations

Our basic equations are self-contained. Indeed, they do not depend explicitly on time.
In order to fit into the conditions of the project, we have to make our equations non-
autonomous. To do this, we will vary the excitation current Iext as a function of time.
We have chosen to vary it according to a Gaussian because it is the most representative
function of our problem (current pulse). We therefore have:

Iext = A · e−(γt)2
(10)

5 Adimension

To non-dimensionalize the Hodgkin-Huxley model, we will first apply the Vaschy Buck-
ingham theorem to find our non-dimension variables.This theorem can help us in this
situation. We have 4 dimensions wich are kg, m2, s, A. We also have 16 quantities wich
are :

V, C, J, INa, IK , IL, αm, αn, αh, βn, βm, βh, m, n, h, t (11)

We obtain 16-4 = 12 dimensionless numbers.

Let’s start again from the basic equations :
dV

dt
= 1

C

(
A · e−(γt)2

− INa − IK − IL
)

(12)
dn

dt
= αn(V )(1 − n) − βn(V )n (13)

dm

dt
= αm(1 − m) − βmm (14)

dh

dt
= αh(1 − h) − βhh (15)

First, let’s deal with time, where τ is a dimensionless coefficient :

τ = γ · t (16)
dτ

dt
· d

dτ
= γ · d

dτ
(17)

We pose :

σ = V

V0
⇔ V = σ · V0 (18)
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Therefore we find 4 news dimensionless coefficients..

γd(σV0)
dτ

= 1
C

(A · e−(γt)2
) − INa − IK − IL) (19)

dσ

dτ
= 1

CγV0
(A · e−(τ)2 − 1

CγV0
(INa) − 1

CγV0
(IK) − 1

CγV0
(IL) (20)

dσ

dτ
= η · e−(τ)2 − µ − ι − ϕ (21)

(22)

We can rewrite the equation 5 with the dimensionless coefficient σ :

αn = Dn · e
−V0σ

Vn (23)

βn = −Dn · e
−V0σ

Vn (24)

(25)

With these equations and the equation of τ , we can rewrite the equations as follows :

γdn

dτ
= Dne

−V0σ

V n · (1 − n) − Dne
−V0σ

V n n (26)
dn

dτ
= Dn

γ
e−χ · (1 − 2n) (27)

dn

dτ
= λe−χ · (1 − 2n) (28)

(29)

Where λ and χ are two new dimensionless coefficients :

χ = V0 · σ

Vn

(30)

λ = Dn

γ
(31)

If we rewrite the equations of m and h 12 with the adimensionnalisation of time, we find
four dimensionless coefficients :

γdm

dt
= αm · (1 − m) − βmm (32)

dm

dτ
= αm

γ
· (1 − m) + αmm

γ
(33)

dm

dτ
= αm

γ
(34)

dm

dτ
= π (35)

(36)
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γdh

dt
= αh · (1 − h) − βhh (37)

dh

dτ
= αh

γ
· (1 − h) + αhh

γ
(38)

dh

dτ
= αh

γ
(39)

dh

dτ
= ϵ (40)

(41)

We can thus rewrite the equations as follows :

dσ

dτ
= η · e−(τ)2 − µ − ι − ϕ (42)

dn

dτ
= λe−χ · (1 − 2n) (43)

dm

dτ
= π (44)

dh

dτ
= ϵ (45)

(46)
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5.1 Recap of dimensionless variables

Terms in the equation Equation Physical interpretation
τ γ · t Analysis time
σ V

V0
Percentage of relative exci-
tation at rest

η 1
CγV0

· A Excitation current function
of V0

χ V0·σ
Vn

Percentage of relative exci-
tation from n gate

µ 1
CγV0

(−INa) Sodium current function of
V0

ι 1
CγV0

(−IK) Potassium current function
of V0

ϕ 1
CγV0

(−IL) Leak current function of V0

λ Dn

γ
opening rates of ion chan-
nels of gate n

π αm

γ
opening rates of ion chan-
nels of gate m

ϵ αh

γ
opening rates of ion chan-
nels of gate h

n / fraction of gates that are in
the permissive state

m / fraction of gates that are in
the permissive state

h / fraction of gates that are in
the permissive state

Table 2: Correspondence between dimensionless numbers and their physical interpretation

Page : 8



Numerical method project

6 Study of particular cases

The purpose of this section is to examine specific cases in our system. We will therefore
analyze the behaviour of our various functions and give them a physical interpretation.
For clarity, we decided to make a notebook. This allows us to easily see how changing
parameters impacts our system. The notebook, with the help of a cursor, instantly returns
the trace of the various functions of our system according to the adimensional parameters.
We know how to vary and compare several parameters without having to recompile the
code and thus see directly the impact of the changes made on our variables. You will find
in the notebook the study of these cases as well as their graphs and interpretations.

7 Conclusion

To conclude, we approached the Hodgkin-Huckley model of equations. This describes
neuronal activity through the opening and closing of ion channels. This is a complex
model, which we had to modify slightly to meet the required specifications. We were able
to understand the latter through the project. Indeed, manipulating the different equa-
tions, understanding what they refer to allowed us to become familiar with the problem
and finally to understand its physical meaning. We were also able to have an approach
to the Runge Kutta method and thus see the strength of the latter to solve a system of
ordinary differential equations, complicated at first.
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8 Annexes

8.1 FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a simplified version of the Hodgkin-Huxley model that
describes the dynamics of action potentials in neurons. The model is used in biophysics
and neuroscience to study neuronal excitability and the propagation of electrical signals
in nerve cells.

The FitzHugh-Nagumo equations are a coupled system of two ordinary differential equa-
tions:

dv(t)
dt

= v(t)(a − v(t))(v(t) − 1) − w(t) + I(t)

dw(t)
dt

= bv(t) − cw(t)

where :

• v(t) : represents the membrane potential of the neuron (state variable 1)

• w(t) : represents a state variable associated with the activation/inactivation of ion
channels (state variable 2)

• a, b, c : positive constants

• a: represents the wave amplitude

• b:

• c: represents the velocity of the travelling wave

• I(t) : is an externally applied current (a function of time)

• The system studied is useful in a particular domain: Yes, the FitzHugh-Nagumo
model is used in biophysics and neuroscience to study the dynamics of action po-
tentials in neurons.

• It is a Cauchy problem: Yes, the FitzHugh-Nagumo equations are a Cauchy problem,
since one can specify initial conditions for v(0) = v0 and w(0) = w0.

• The equations must be coupled: Yes, the FitzHugh-Nagumo equations are coupled
because the change in v(t) depends on w(t) and vice versa.

• Non-linear (or linear with non-constant coefficients): Yes, the FitzHugh-Nagumo
equations are non-linear due to the terms v(t)2 and v(t)3.
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• Non-autonomous with a minimum of 2 state variables: Yes, if I(t) is a non-constant
function of time, the FitzHugh-Nagumo equations become non-autonomous. The
system also has two state variables: v(t) and w(t).

So, the FitzHugh-Nagumo equations therefore meet all the criteria specified in the course.
This model provides valuable insights into the dynamics of action potentials and can be
utilized for a range of studies in biophysics and neuroscience. We have to find academic
articles about the FitzHugh-Nagumo to check the quality of our report2.

2A peer-reviewed publication is also sometimes referred to as a scholarly publication. The peer-review
process subjects an author’s scholarly work, research, or ideas to the scrutiny of others who are experts
in the same field and is considered necessary to ensure academic scientific quality
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